PREPUBLICATION REPRINT ORDER FORM

Please complete this form even if you are not ordering reprints. Please be sure to include your article number in the appropriate place to avoid delays and/or errors with your order. This form MUST be returned with your corrections. Your reprints will be shipped approximately 4 weeks after print publication. Reprints ordered after printing are substantially more expensive.

JOURNAL: Human Brain Mapping (HBM)

TITLE OF MANUSCRIPT: ____________________________________________________________

ARTICLE NO.: _______ NO. OF PAGES: _____ AUTHOR(S): _____________________________

REPRINTS 8½x11

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>336</td>
<td>501</td>
<td>694</td>
<td>890</td>
<td>1,052</td>
</tr>
<tr>
<td>5-8</td>
<td>469</td>
<td>703</td>
<td>987</td>
<td>1,251</td>
<td>1,477</td>
</tr>
<tr>
<td>9-12</td>
<td>594</td>
<td>923</td>
<td>1,234</td>
<td>1,565</td>
<td>1,850</td>
</tr>
<tr>
<td>13-16</td>
<td>714</td>
<td>1,156</td>
<td>1,527</td>
<td>1,901</td>
<td>2,273</td>
</tr>
<tr>
<td>17-20</td>
<td>794</td>
<td>1,340</td>
<td>1,775</td>
<td>2,212</td>
<td>2,648</td>
</tr>
<tr>
<td>21-24</td>
<td>911</td>
<td>1,529</td>
<td>2,021</td>
<td>2,536</td>
<td>3,037</td>
</tr>
<tr>
<td>25-28</td>
<td>1,004</td>
<td>1,707</td>
<td>2,267</td>
<td>2,828</td>
<td>3,388</td>
</tr>
<tr>
<td>29-32</td>
<td>1,108</td>
<td>1,894</td>
<td>2,515</td>
<td>3,135</td>
<td>3,755</td>
</tr>
<tr>
<td>33-36</td>
<td>1,239</td>
<td>2,092</td>
<td>2,773</td>
<td>3,456</td>
<td>4,143</td>
</tr>
<tr>
<td>37-40</td>
<td>1,329</td>
<td>2,200</td>
<td>3,033</td>
<td>3,776</td>
<td>4,528</td>
</tr>
</tbody>
</table>

** REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201) 748-8789 FOR A PRICE QUOTE.

COVERS

| 100 Covers | $90        | 200 Covers | $145        | 300 Covers | $200        |
| 400 Covers | $255        | 500 Covers | $325        | Additional 100s | $65

**International orders must be paid in U.S. currency and drawn on a U.S. bank

Please send me __________ reprints of the above article at____________________ $________

Please send me __________ generic covers of the above journal at____________________ $________

Please add appropriate State and Local Tax [Tax Exempt No.____________________] $________

Please add 5% Postage and Handling______________________________________________ $________

TOTAL AMOUNT OF ORDER** ______________________________________ $________

Please circle one: Check enclosed Bill me Credit card

If credit card order, charge to: American Express Visa MasterCard Discover

Credit Card No. _____________________________ Signature _____________________________ Exp. Date _________

Bill To: Ship To:

Name: __________________________________________________________________________

Address/Institution: ______________________________________________________________________________________

Purchase Order No.: _____________________________ Phone: _____________________________ Fax: _____________________________

E-mail: ______________________________________________________________________________________
COLOR REPRODUCTION IN YOUR ARTICLE

These proofs have been typeset using figure files transmitted to production when this article was accepted for publication. Please review all figures and note your approval with your submitted proof corrections. You may contact the journal production team at HBMprod@wiley.com if you wish to discuss specific concerns.

Because of the high cost of color printing, we can only print figures in color if authors cover the expense. If you have submitted color figures, please indicate your consent to cover the cost on the table listed below by marking the box corresponding to the approved cost on the table. The rate for this journal is $500 USD per printed page of color, regardless on the number of figures appearing on that page.

Please note, all color images will be reproduced online in Wiley InterScience at no charge, whether or not you opt for color printing.

You will be invoiced for color charges once the article has been published in print.

Failure to return this form with your article proofs may delay the publication of your article.

<table>
<thead>
<tr>
<th>No. Color Pages</th>
<th>Color Charge</th>
<th>No. Color Pages</th>
<th>Color Charge</th>
<th>No. Color Pages</th>
<th>Color Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$500</td>
<td>5</td>
<td>$2500</td>
<td>9</td>
<td>$4500</td>
</tr>
<tr>
<td>2</td>
<td>$1000</td>
<td>6</td>
<td>$3000</td>
<td>10</td>
<td>$5000</td>
</tr>
<tr>
<td>3</td>
<td>$1500</td>
<td>7</td>
<td>$3500</td>
<td>11</td>
<td>$5500</td>
</tr>
<tr>
<td>4</td>
<td>$2000</td>
<td>8</td>
<td>$4000</td>
<td>12</td>
<td>$6000</td>
</tr>
</tbody>
</table>

***Contact HBMprod@wiley.com for a quote if you have more than 12 pages of color***

☐ Please print my figures color  ☐ Please print my figures in black and white

☐ Please print the following figures in color ___________________________________________________

and convert these figures to black and white ___________________________________________________

Approved by ___________________________________________________

Billing Address ___________________________________________ E-mail ____________________________

Telephone ___________________________ Fax ___________________________
Decay in Early Right Alpha Band Phase Synchronization and Late Gamma Band Oscillations in Processing Syntax in Music

María Herrojo Ruiz,1,2 Stefan Koelsch,3,4 and Joydeep Bhattacharya5,6*

1Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid, Spain
2Institute of Music Physiology and Musician’s Medicine, Hanover University of Music and Drama, Hanover, Germany
3Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
4Department of Psychology, University of Sussex, Sussex, Falmer, Brighton, United Kingdom
5Department of Psychology, Goldsmiths College, University of London, New Cross, London, United Kingdom
6Commission for Scientific Visualization, Austrian Academy of Sciences, Vienna 1220, Austria

Abstract: The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early (~200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (<8 Hz) brain oscillations. Further, we found that music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9–10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late (~500 ms) decrease in gamma band (38–50 Hz) oscillations over fronto-central brain regions. These results indicated a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations. Hum Brain Mapp 00:000–000, 2008. © 2008 Wiley-Liss, Inc.

Key words: music; syntax; oscillations; synchronization; phase; EEG; network

INTRODUCTION

Music processing is a complex set of perceptive and cognitive operations, which in turn are temporally integrated and linked to previous experiences recruiting extensive memory systems by which emotions emerge. Consequently, the investigation of the neurocognition of music has been increasingly important for the understanding of human cognition and its underlying brain mechanisms [Koelsch and Siebel, 2005]. The present study focused on the syntactic processing in music perception. Music involves perceptually discrete elements (e.g. tones, intervals, and chords) organized into sequences which are...)
Hierarchically structured according to syntactic regularities [Patel, 2003; Tillmann et al., 2000]. In the context of major-
minor tonal music, regularities consist of the arrangement
of chord functions within harmonic progressions
[Krumhansl and Toiviainen, 2001; Schönberg, 1969]. The
computation of structural relations between these ele-
ments, for instance between a chord function and a pre-
ceding harmonic context, is part of the analysis of musical
structure. The integration of both regular and irregular
events into a larger meaningful musical context is required
for the emergence of meaning based on the processing of
musical structure [Krumhansl, 1997; Meyer, 1956].

A multitude of studies have focused on syntax viola-
tions in language domain [Eckstein and Friederici, 2006;
Friederici et al., 1996; Friederici, 2001, 2002; Gunter et al.,
1999; Hahne and Friederici, 1999; Palolaihi et al., 2005],
reporting a robust event-related-potential (ERP) compo-
nent, the early (100–350 ms) left anterior negativity
(ELAN), which is taken to reflect initial syntactic structure
building. These studies have shown that the neural genera-
tors of the ELAN lie in the left inferior frontal cortex (infe-
rior BA 44), an area which is also involved in the process-
ing of syntactic information in music [Maess et al., 2001].
A study of speech perception reported an early negativity,
which was elicited bilaterally in response to combined pro-
sodic-syntactic violations. This result indicated that addi-
tional right hemispheric resources were recruited for the
initial structure building processes [Eckstein and Friederici,
2006]. On the other hand, syntax violations in mathemati-
cal expressions (e.g. equations) were recently investigat-
ed in an ERP paradigm [Martin-Loeches et al., 2006], which
reported parieto-occipital negativities instead of frontal
negativities, leading to a conclusion of less overlap
between the syntactic processing of language and mathe-
matics than previously thought [Dehaene and Cohen,
1995].

Most of the electrophysiological studies on musical syn-
tax also adopted the classical ERP paradigm [Koelsch
et al., 2000; Koelsch et al., 2002a,b; Patel et al., 1998]. Using
chord sequences with final chords that were either har-
monic syntactically regular or irregular, it has been shown
that music-syntactical violations elicit an early right ante-
rior negative (ERAN) component; this component is maxi-
mal at 200 ms after the onset of irregular chords and is
strongest over right frontal electrode regions [Koelsch
et al., 2000; Koelsch et al., 2002b]. The ERAN can be eli-
cited in absence of directed attention [Koelsch et al.,
2002a], in both musicians and nonmusicians [Koelsch
et al., 2000; Loui et al., 2005], indicating an inherent human
ability to acquire knowledge about musical syntax through
listening experiences [Tillmann et al., 2000]. Using magnetoencephalogram, it was found that the
mERAN (magnetic-ERAN) was generated predominantly
in the inferior fronto-lateral cortex [Maess et al., 2001].
However, using fMRI, it was found that posterior temporal
regions (Heschl’s gyrus, superior temporal sulcus, planum
temporale), in addition to the frontal areas, were also acti-
vated during music-syntactic processing [Koelsch et al.,
2002c].

Although these studies offer invaluable information
about the neural correlates of music-syntactic irregularities,
they suffer from two primary limitations. First, EEG stud-
iies relied heavily on the averaging techniques which do
not adequately represent aspects of brain activity that we
expect to be relevant for music cognition, such as the in-
formation about the underlying oscillatory dynamics. This
dynamics is increasingly believed to provide insights into
neuronal substrates of perceptual and cognitive processes
[Basar et al., 2001; Kahana, 2006; Rizzuto et al., 2003;
Singer, 1999; Tallon-Baudry and Bertrand, 1999; Ward,
2003]. Second, fMRI studies suggest that irregularities in
musical syntax are processed by multiple brain areas, yet
it is not clear whether these regions operate in isolation or
interact with each other. This latter information is sup-
posed to be crucial since there is extensive evidence that
any cognitive task demands not only simultaneous co-acti-
vation of various brain regions but also functional interac-
tion between these regions [Bressler and Kelso, 2001;
Bressler, 1995; Brovelli et al., 2004; Engel and Singer, 2001;
Engel et al., 2001; Friston, 2001]. This dynamical interaction
is considered to be best characterized by transient phase
relationships between the oscillatory activities of underly-
ing neuronal populations, termed as phase synchroniza-
tion, at the frequency of interest [Lachaux et al., 1999;
Tass et al., 1998; Varela et al., 2001].

Therefore, in this study we aimed to address these limi-
tations by investigating the oscillation and synchronization
content of the electrical brain responses recorded from
human subjects during listening to chord sequences end-
ing in regular or irregular chords.

**MATERIALS AND METHODS**

**Stimuli**

The stimuli of our experiment consisted of two chord
sequences, both with five chords and a pause (half-note).
Chord sequences were composed according to the classical
rules of harmony (voice leading was performed in a coun-
terpoint-like fashion, without parallel fifths or octaves).
The presentation time for each of the first four chords was
600 ms, and for the final chord was 1200 ms. The first four
chords were identical for both types of sequences: tonic,
subdominant, supertonic, dominant. The final of the fifth
chords was either a tonic (regular) or a supertonic (irreg-
ular) chord. In major-minor tonal music, one particular
example of a music-syntactic regularity is the end of a har-
monic progression, which is usually characterized by a
dominant-tonic progression. Thus, the final supertonic
chord in our experiment represents a music-structural
irregularity. Note that, psychoacoustically, supertonic
chords do not represent physical oddballs, at least not with respect to
pitch commonality or roughness. Moreover, the pitches of
the supertonic chords correlated higher with the pitches in the
Examples of musical stimuli. Top row: chord sequences (in D-major), ending either on a tonic chord (regular, A), or on a supertonic (irregular, B). (C) In the experiment, sequences from all twelve major keys were presented in pseudo-random order. Each sequence was presented in a tonal key that differed from the key of the preceding sequence; regular and irregular sequence endings occurred equiprobably ($P = 0.5$).

Eleven of them were nonmusicians, who had never attended a music lesson, and 9 of them were amateur musicians, who had learned to play an instrument or sung in a choir for 2–10 years (average of 5.4 years). All participants reported normal hearing. The experimental session was of ~2 h length. During the session the participants were watching a silent movie with subtitles and performing the timbre change detection task at the same time. The inclusion of a subtitled movie served two purposes: (i) it made the daunting task of listening for 120 min to detect the deviant stimuli feasible, and (ii) it reduced the amount of directed attention to the music syntactically regular or irregular chords, thereby reducing the effect of attentional modulation of the brain responses associated with processing the syntax in music.

**EEG Recording and Pre-Processing**

Multivariate EEG signals were recorded from 40 electrodes placed over the scalp according to the extended 10–20 system referenced to the left mastoid. Additionally, electrooculogram was recorded to monitor blinks and eye movements. We used the EEGLAB Matlab Toolbox [Delorme and Makeig, 2004] for visualization and filtering purposes. After rejecting segments of data with artefacts like blinks, eye movements and muscle artefacts as determined by visual inspection, we applied a high-pass filter at 0.5 Hz to remove linear trends and a notch filter at 50 Hz (49–51 Hz) to eliminate power-line noise. The filtering option in EEGLAB used the MatLab routine filter (zero-phase forward and reverse digital filtering). The sampling rate was 250 Hz. The data epochs representing single experimental trials time locked to the onset of the last chord were...
extracted from −500 ms to 1,000 ms, resulting in approximately n = 600 epochs per condition and participant.

Data Analysis

We performed the following three types of analysis: (i) standard averaging technique to analyze ERP components, wavelet based time-frequency representations (TFR) to analyze (ii) the spectral power of the oscillatory contents and (iii) the spatiotemporal dynamics of the phase synchronization. This last analysis was done by means of bivariate synchronization and synchronization cluster analysis (SCA).

Neural phase synchrony refers to the phenomenon in which neurons coding for a common representation synchronize their oscillatory firing activity within a restricted frequency band [Trujillo et al., 2005; Varela et al., 2001]. The analysis of the spectral power of the oscillatory activity focuses on the local synchrony of neuronal populations (synchrony within neighboring cortical areas), whereas the phase synchronization analysis refers to the phase coupling between neuronal assemblies, which lie either within the same hemisphere or at different hemispheres. This large-scale integration is believed to be required for the manifestation of a complete cognitive structure [Varela et al., 2001]. Thus, the two approaches provide complementary information about the underlying neuronal processing [Le Van Quyen and Bragin, 2007].

Time-frequency analysis

We studied the oscillatory brain responses by means of wavelet based TFR analysis [Tallon-Baudry et al., 1997]. We chose a complex Morlet wavelet with a Gaussian shape both in time and in frequency [Mallat, 1999]:

\[ \psi(t) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{1}{2}t^2\right) \exp(i\eta t) \]  

(1)

The convolution of translated (t') and rescaled (s) versions of this wavelet with a signal \( x(t) \) gives the wavelet transform for each scale and time instant,

\[ W_s(t', s) = \langle x | \psi_{s,t'} \rangle = \int_{-\infty}^{\infty} x(t) \psi_{s,t'}(t) \, dt \]  

(2)

with

\[ \psi_{s,t'}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-t'}{s}\right) \]  

(3)

In the time domain, the wavelet spreads around \( t = t' \) with a standard deviation \( \sigma_t = s/2 \), and in the frequency domain its center frequency is \( f = \eta/2\pi s \) with a standard deviation \( \sigma_f = 1/2\pi \) [Allefeld, 2004]. The value \( \eta \) defines the constant relation between the center frequency and the bandwidth \( \eta = f/\sigma_f \), and therefore is characteristic of the wavelet family in use; \( \eta \) determines the temporal resolution \( \sigma_t = \eta/(4\pi) \) and frequency-resolution \( \sigma_f = f/\eta \) which is always within the limit imposed by the uncertainty principle \( \sigma_f \sigma_t = 1/(4\pi) \) [Mallat, 1999]. For the analysis of the fast cognitive processes, the temporal-resolution is critical to detect possible functional states occurring close in time [Schack et al., 1999; Trujillo et al., 2005]. We chose \( \eta = 7 (\eta > 5 \text{ is needed for the convergence of the convolution integral in numerical calculations [Grossman et al., 1989]}) \), which provides a good compromise between high frequency resolution at low frequencies and high time resolution at high frequencies (for example, \( \sigma_f = 1.4 \text{ Hz at 10 Hz; } \sigma_t = 11 \text{ ms and } \sigma_t = 7 \text{ Hz at 50 Hz.} \) The frequency domain was sampled from 2 to 60 Hz with a 1 Hz interval between frequencies.

To study changes in the spectral content of the oscillatory activity, we used the wavelet energy, which was computed as the squared norm of the complex wavelet transform:

\[ E_s(t, f) = \left| W_s(t, f) \right|^2 \]  

(4)

We distinguished between three types of oscillatory brain responses: (i) evoked response or response phased-locked to the stimulus onset, and (ii) induced response or response not phased-locked to the stimulus onset [Galambos, 1992]. The former response was estimated by applying the wavelet transform to the averaged ERP profile, thus keeping the phase-locked information across epochs. The joint response (evoked + induced) was obtained by applying wavelet transform of each trial followed by averaging. Thus, the induced activity was computed by subtracting the evoked response from the joint response. Although this technique is valid to distinguish evoked from induced responses, in the case of extensive latence variability in the onset of the ERP, the phase-locked activity could be underestimated. A more detailed study of the evoked and induced responses in our paradigm should take that into account.

For both types of responses, the mean TFR energy \( E_{\text{base}}(f) \) of the pre-stimulus period (between −300 and −100 ms) was subtracted. The wavelet energy was further normalized by the standard deviation \( \sigma_{\text{base}}(f) \) of the baseline period as follows:

\[ E_{\text{norm}}(t, f) = \frac{E_s(t, f) - E_{\text{base}}(f)}{\sigma_{\text{base}}(f)} \]  

(5)

Our investigation of the TFR energy emphasized high frequency oscillations (>30 Hz) due to the relevance of the fast gamma oscillations for both the binding of temporal (and spatial) information necessary to build a coherent perception [Tallon-Baudry et al., 1997] and the integration of bottom-up and top-down processes [Engel and Singer, 2001; Herrmann et al., 2004a; Pulvermuller et al., 1997; Varela et al., 2001].

A post-hoc analysis of the TFR energy in the delta and theta band was performed due to the fact that the domi-
nant frequencies of the EEG signal which contributed to the generation of the ERAN component were below 8 Hz. Here the non-normalized form of the wavelet energy Eq. (4) was used to compare explicitly energy for each condition the poststimulus with the prestimulus TFR, because of the possible influence of the prestimulus brain state on the event-related brain responses [Doppelmayr et al., 1998].

**Phase synchrony analysis**

The wavelet transform Eq. (2) can be expressed explicitly in terms of frequency and time by using the relationship between the scale \( s = \eta / 2nf \) and the frequency \( f \), and from this complex-valued signal the corresponding frequency-specific instantaneous phase can be calculated as follows:

\[
\phi(t, f) = \arg W_i \left( t, \frac{\eta}{2nf} \right). \tag{6}
\]

For each trial we computed the complex phases \( \phi_i(t, f) \) of the channel \( i \) at an epoch \( k \) and used them for the subsequent synchrony analysis. It has been widely reported in the literature [Hurtado et al., 2004; Lachaux et al., 1999; Pereda et al., 2005; Rodriguez et al., 1999; Tass et al., 1998] that the assessment of phase synchronization between neurophysiological signals is better understood in a statistical sense. One of the approaches taking this into account is use of the concept of directional statistics [Mardia, 1972] in bivariate phase synchronization.

The strength of the phase synchronization between two electrodes \( i \) and \( j \), at time \( t \) and with centre frequency \( f \), is:

\[
R_{ij} = \frac{1}{n} \sum_{k=1}^{n} \exp(i(\phi_{ik} - \phi_{jk})). \tag{7}
\]

where \( n \) is the number of epochs. This index is nearly 0 when there is no phase relationship between the considered electrode pair across the epochs, and approaches 1 for strong phase synchronization. In the context of directional statistics, this reflects whether the distribution of the relative phase between two electrodes is spread or concentrated on the unit circle, respectively.

In the case of large number of recording electrodes a measure of global synchronization strength can be computed, from the pair-wise synchronization matrix, \( R_{ij} \), for each time point \( t \) and with centre frequency \( f \):

\[
R = \frac{2}{N(N-1)} \sum_{i<j} R_{ij}. \tag{8}
\]

But this measure conceals the spatial distribution of the synchronization, an issue of fundamental importance in cognitive neuroimaging where one has to look for possible short- or long-range phase synchronization between different cortical areas. Recently a new method was proposed that can provide information about both the global synchrony strength and the topographical details of the synchronization in event-related brain-responses: the SCA [Allefeld and Kurths, 2004], which has been applied to visual attention and language processing experiments [Allefeld, 2004; Allefeld et al., 2005].

The underlying idea is to model the array of electrodes as individual oscillators that take part in different strength \( c \) in a single synchronized cluster \( C \). This individual cluster characterizes, in each epoch \( k \), the dynamics of the array as a whole through the cluster phase \( \Phi_C \), which is the result of a circular weighted mean of the oscillator phases,

\[
\Phi_C = \arg \sum_{i} c_i \exp(i\phi_{ik}). \tag{9}
\]

where the participation indices \( c_i \) are calculated as a (monotonously increasing) function \( f(R_{C}) \) of the phase locking between each individual oscillator and the cluster,

\[
R_C = \left| \frac{1}{n} \sum_{k=1}^{n} \exp(i(\phi_{ik} - \Phi_C)) \right|. \tag{10}
\]

The basic premises that are relevant to this approach are that the dynamics of the phase differences can be decoupled by introducing a mean field, i.e. that the assumption of a single synchronized clusters holds, and that its stochastic part is independent for each of them. Taking this into account, the population values \( \rho_0 \) of the empirical estimate of bivariate synchronization \( \rho_0 \) can be factorized as \( \rho_0 = \rho_C \rho_C \) and a self-consistent solution of this set of equations can be found. The SCA algorithm provides a maximum likelihood estimation of the \( \rho_0 \) representing the phase synchronization index between the oscillator \( i \) and the cluster, \( R_{C} \).

By computing the index \( R_{C} \) we could detect sub-populations of electrodes that adjust differently to the global rhythm and obtain a topographical picture of the synchronization and its temporal dynamics. As a measure of the global synchronization strength we used the cluster mean,

\[
R_C = \frac{1}{N} \sum_{i} R_{C_i}. \tag{11}
\]

It is important to mention that the SCA assumes phase differences distributed around zero, whereas the bivariate synchronization analysis can detect a more general case of phase differences bounded by a constant value different from zero. Consequently, the index \( R_{C} \) would not detect a delay in the phase synchronization between electrodes and cluster. However, a combined use of the SCA and the bivariate synchronization analysis could clarify this issue. If both approaches deliver converging results, we could assume that the distribution of phase differences is around zero, but if the data of the bivariate synchronization analysis shows different results, they could be due to a constant (non-zero) phase difference between electrodes.
With the SCA we explored low (< 15 Hz) and high (15–50 Hz) frequency bands, but the SCA delivered weak effects in the beta (15–30 Hz) and gamma (30–50 Hz) bands which, consequently, were left out from this study. In a number of studies synchronization in EEG signals has been investigated using classical magnitude-squared coherence function [Schack et al., 1999; Srinivasan et al., 1998; von Stein and Sarnthein, 2000; von Stein et al., 2000], which is equivalent to a correlation coefficient in the frequency domain, as a linear measure of bivariate synchronization. Magnitude-squared-coherence mixes both phase and amplitude correlation [Womelsdorf et al., 2007], and there exists no clear-cut way to extract the phase synchronization information from the coherence function [Lachaux et al., 1999]. Further, Tass et al. [1998] pointed out that synchronization of two oscillators is not equivalent to the linear correlation of two signals that is measured by coherence. For instance, if the oscillators are chaotic and their amplitudes are varying without any temporal correlation yet their phases are coupled, coherence would be very low and it would not be possible to detect synchronization of their phases. Since phase synchronization requires an adjustment of phases but not of amplitudes, it is a more general approach to address the study of synchronization between EEG signals.

Reference Analysis

The use of a common reference for coherence and phase synchronization analysis has been criticized in recent years based on the argument that the common reference introduces spurious correlations uniformly distributed over the scalp [Fein et al., 1988; Guevara et al., 2005; Nunez et al., 1997; Schiff, 2005]. Instead, the use of surface Laplacians has been encouraged because they are essentially reference-free and additionally reduce the volume conduction effect [Nunez, 1995; Perrin et al., 1987; Perrin et al., 1989; Schiff, 2005]. Nevertheless, Nunez et al. [1997, 1999] demonstrated that although surface Laplacian methods remove most of the distortions caused by the common reference electrode and volume conduction, common reference methods, like average reference and digitally linked mastoids, produce reasonably reliable results for long-range coherence. Moreover, the surface Laplacian acts as a spatial band-pass filter of scalp potential, thus emphasizing the locally synchronized sources and deemphasizing the long-range synchronized sources. Further, it is less accurate near the edges of the electrode array due to a lack of neighboring electrodes [Nunez et al., 1997; Srinivasan et al., 1998]. However, it provides a more precise representation of the underlying source synchronization, as it is a rather good estimate of the local dura potential. Therefore, this reference scheme is preferred when studying the topography of the synchronization. In any study of (phase) synchronization, all of these issues should be taken into consideration in order to avoid the systematic rejection of any particular scheme of reference: both common reference and surface Laplacian supply useful information, but that has to be interpreted within the limitations of each approach. An interesting new approach to the problem of volume conduction and active reference is the use of the phase lag index, a novel measure of phase synchronization, which has been recently shown to be less affected by the influences of common sources and active reference electrodes [Stam et al., 2007].

In this study, we used both average reference (as common reference) and Laplacian methods. Both recommend high density EEG (≥48 electrodes) to perform optimally. We had 40 EEG electrodes, montage which is not ideal but still useful. We chose the spherical spline Laplacian [Perrin et al., 1989], assigning idealized positions on the unit sphere to the electrodes. We selected spline of order m = 4 after Perrin et al. [1989].

Statistics

Statistical analysis for the ERP components and the TFR based oscillation and phase synchronization indices was performed with the use of a non-parametric pair-wise permutation test [Good, 1994]. It was necessary to use a non-parametric test because the distributions cannot be assumed to be Gaussian. Also, the permutation test provides exact significance levels even for small sample sizes and small differences between conditions. For all indices, with the exception of the theta and delta band TFR energy for each condition separately, the test statistic was the difference between the two sample means: irregular (supertonic) chords minus regular (tonic) chords. In the case of the delta and theta spectral power, the maximum peak of the non-normalized TFR energy Eq. (4) within a time window from 0 to 300 ms poststimulus was compared statistically with the mean value of the TFR energy averaged between 300 and 100 ms prior to the stimulus onset. When comparing the difference between conditions, also in this case test statistic was the difference between the two sample means (normalized expression, Eq. (5)).

Additionally, we tested whether the induced gamma spectral power for each separated condition was significantly different of the pre-stimulus levels. In this case, the test statistic was the difference between the sample mean after stimulation and the mean pre-stimulus value.

In all cases, the permutation tests were computed by taking the first and second half of 5,000 random permutations of the joint sample and calculating replications of the test statistics. The p-values were then obtained as the frequencies that the replications had larger absolute values than the experimental difference. When multiple permutation tests are performed, the Bonferroni correction of the p-values gives usually exceedingly conservative results when applied to EEG signals, due to the violation of the assumption of independent tests. Consequently, we complemented the permutation test with a step-down approach [Good, 2005; Troendle, 1995]. This step-down method explicitly takes into account the correlations between the tests and,
as a consequence, the final \( p \)-values do not need to be extra corrected. Therefore, when several tests were computed via this stepwise algorithm the threshold values used were the standard 0.05 and 0.01 significance levels.

To study the spatiotemporal progression of ERP components, electrodes were grouped into six regions of interest (ROIs): LA (left anterior: FP1, F9, AF7, F7, F3), LC (left central: FT7, FC3, T7, C3, TP7, CP5, CP3), LP (left posterior: P7, P3, P07, O1), RA (right anterior: FP2, AF8, F10, F4, F8), RC (right central: FC4, FT8, C4, T8, CP4, CP6, TP8), RP (right posterior: P4, P8, PO8, P10, O2). These same six ROIs were used in the analysis of the spectral power distributions of evoked and total theta oscillatory activities.

To search for significant differences between conditions, and between each condition separately and the pre-stimulus level, in terms of the gamma band spectral power, we evaluated a permutation test for each of the 20 frequencies in the range of 30–50 Hz. To study the topographical differences in the phase synchronization indices obtained after computing the surface Laplacian, electrodes were grouped into eight ROIs. Some of the groups of electrodes were the same as those used in the ERP analysis (LA, LP, RA, RP), but the electrodes of central regions were separated into central ROIs and temporal ROIs: RC (Right central: FC4, C4, CP4, CP6), RT (Right temporal: FT8, T8, TP8), LC (left central: FC3, C3, CP5, CP3) and LT (Left temporal: FT7, T7, TP7).

\[ \text{RESULTS} \]

\[ \text{ERP Analysis} \]

ERPs were derived by averaging the raw trials for each subject and condition after re-referencing to the mean potential of the mastoids and performing a baseline correction between 500 and 0 ms prior to the onset of the final chord. The grand-averaged ERP waveforms for the regular tonic and irregular supertonic chords show that the irregular chords elicited a clear ERAN compared with the regular chords (see Fig. 2). The ERAN component peaked around 200 ms and was widely distributed over the scalp with slightly higher amplitudes at right anterior electrodes than at their left counterparts. Figure 3A depicts the 6 ROIs, whereas in Figure 3B the significant \((P < 0.01)\) statistical differences between the two chord types for the 6 ROIs are plotted. This representation offers a picture of the spatiotemporal progression of the ERAN, indicating clusters of scalp areas showing significant differences in the waveforms. The earliest effect was found at right anterior electrode regions, mainly at the right fronto-central region with a temporal spread of 160–220 ms. This effect then manifested in central and posterior electrode regions bilaterally.

Since the ERAN component almost disappeared when the ERPs were recomputed after filtering the raw signal with 8 Hz low-pass (figure not shown), we concluded that this component was mainly constituted of brain oscillations with frequencies lower than 8 Hz.

\[ \text{Spectral Power Analysis} \]

\[ \text{Theta band responses} \]

Since the ERAN disappeared with 8 Hz low-pass filtering, we further tested whether this ERP component was manifested as a decrease in the evoked or total (evoked + induced) slow oscillations. Around the latency of the ERAN, we investigated whether the changes in the evoked and total spectral power distributions relative to prestimulus levels were more specifically localized in the delta (< 4 Hz) or in the theta (4–7 Hz) frequency bands. For this purpose we used the average reference scheme. The time courses of the total and evoked TFR energy for the delta and theta bands are presented in Figure 4 at the right electrodes F4 and FT8, within the average reference scheme. A poststimulus increase in these measurements can be observed for both regular and irregular chords (Fig. 4A–H), with higher increases for the regular condition.

Curves in Figure 4A–H exhibit local maxima in the spectral power relative to baseline levels in all cases considered, with more dramatic changes in the regular condition. These results indicate that the processing of regular chords elicits increases in phase-locked but also non-phase locked oscillatory activity in delta and theta frequency bands, increases which are weaker when processing irregular chords.

\[ \text{Figure 2.} \]

ERPs were obtained for the following processing of regular chords (represented by black lines), processing of irregular chords (blue), and the difference profiles (blue-black, red). The response to the irregular chords is less positive than the response to the regular chords, leading to a negative component known as the ERAN.
The difference (irregular minus regular) curves confirm the lower spectral power for irregular chords relative to regular chords, difference which is more pronounced in the total spectral power (Fig. A-L, dotted curves). For statistical analyses, total and evoked theta and delta activities, for each condition separately, were first averaged across the electrodes of the 6 ROIs (see Statistics in Materials & Methods). Next, the maximum values between 100 and 300 ms poststimulus of the indices were compared for each condition separately (via permutation test) with the mean baseline level between 300 and 100 ms prior to the stimulus onset at each ROI (Fig. A–H). Finally, we tested for differences between conditions for the evoked and total theta and delta activities at each ROI, by comparing in the time window 100–300 ms the normalized spectral power (Eq. (5)) of irregular and regular chords. The permutation test did not reveal significant \( (P > 0.05) \) changes at any of the ROIs in response to stimulation in the total spectral power elicited by the regular or irregular chords. However, significant \( (P < 0.01) \) increases in the delta and theta evoked spectral power were found. More specifically, the theta evoked spectral power differed from baseline levels in all 6 ROIs for processing both regular and irregular chords. The mean latency across ROIs of this effect was 203 ms, for the regular chords, and 189 ms, for the irregular chords. Similar increases relative to baseline levels in the delta evoked spectral power were found to be significant \( (P < 0.01) \) at anterior and central electrode regions, bilaterally, with a mean latency across ROIs of 237 ms for music-syntactically regular chords and 260 ms for music-syntactically irregular chords. Interestingly, the peaks in the delta evoked spectral power were delayed relative to the peaks in the theta evoked spectral power.

The difference (supertonic minus tonic) total spectral power was not significant \( (P > 0.05) \) in the theta frequency range, but in the delta band \( (P < 0.01) \) at RA and RC electrode regions with a latency period of 100–150 ms. Significant differences in the spectral power of phase-locked theta activity were obtained between 100 ms and 160 ms at left- and right-anterior \( (P < 0.05) \) brain areas.

As indicated in this section, the poststimulus changes were due to a smaller spectral power for irregular relative to regular chords.

**Gamma band responses**

The TFR analysis was extended to investigate the spectral power distribution of evoked and induced oscillatory activities in the high frequency range (30–50 Hz). The early processing of irregular and regular chords elicited similar bursts of gamma oscillations (50–100 ms, 30–37 Hz, figure not shown) but no statistically significant differences between the two conditions were found. The difference TFR, irregular-regular, is plotted in Figure 5 for both common reference (A) and Laplacian algorithm (B). Only one significant zone of reduced spectral power was found, which was similar for both reference schemes: a decrease between 40 and 50 Hz in the time span of 510–560 ms for the common reference, and a broader decrease between 38 and 50 Hz and with a latent period of 500–550 ms for the Laplacian scheme. This decrease was due to both an increase (from the baseline) in the induced gamma spectral power during regular chord processing and a decrease (from the corresponding baseline) in the induced gamma spectral power during irregular chord processing (see Fig. 6). Only the increase relative to pre-stimulus levels in the regular condition was significant \( (P < 0.01) \), indicating that...
for the processing of irregular chords late changes in induced oscillatory activity were absent.

The topography of the decrease in the spectral power of the induced oscillatory activity averaged over the frequency range 38–50 Hz and the time window 500–550 ms is illustrated in Figure 5C. In this plot the TFR energy obtained after applying the surface Laplacian was averaged across trials for the irregular versus the regular chord. Peaks of reduced spectral power emerged at the frontal electrodes FZ, AF8, F8, and F9 as well as at the centro-parietal CPz, temporo-parietal electrode TP8 and parietal electrodes P8 and P9.

Figure 4.

Time course of the spectral power distribution of total and evoked delta and theta oscillatory activity (non-normalized expression, Eq. (4) at the right-hemisphere electrodes F4 and FT8 with average reference scheme. (A–D) Total oscillatory activity in the delta band (A,B) and theta band (C,D) for the irregular (dashed lines) and regular (solid lines) conditions showing clear larger values for the regular condition. (E–H) Same for the evoked oscillatory activity. Significant differences ($P < 0.01$) between the maximum poststimulus peak and mean baseline level are indicated at the average latency for regular chords (vertical solid lines) and irregular chords (vertical dashed lines). (I–L) Difference (irregular minus regular) total (dotted lines) and evoked (solid lines) oscillatory activity indicated in standard deviations from the 100–300 prestimulus baseline Eq. (5). Irregular chords exhibit less spectral power as compared with regular chords, both in the phase-locked and in the total oscillations. The vertical lines represent regions of significance ($P < 0.05$) for the comparison conditions in the delta band phase-locked and total spectral power.
Phase Synchrony Analysis

Synchronization cluster analysis

After re-referencing the data using a common reference, for each frequency <15 Hz and time instant, the cluster mean was computed as an index of spatial global synchronization strength as indicated by the SCA approach (see Materials and Methods for details). The difference values are shown in Figure 7A. The main effect is that irregular chords, as compared with regular chords, were associated with a robust decrease in the degree of global phase synchrony in the lower alpha band with the frequency span of 8–10 Hz and the time span of 175–250 ms. The analyses were repeated after Laplacian, and the result was very similar to that based on common reference (see Fig. 7B).

To obtain the topography of this decrease in phase synchrony effect, we averaged the 8–9 Hz index $R_{\text{C}}$ of the electrode i over the time window 175–250 ms for each condition separately and analyzed the difference (irregular minus regular chords, Fig. 7C). For both conditions separately, the main synchronized structure was localized mainly at the left temporal region but also at the electrode FC4 (not shown). It is important to note that the synchronized cluster denotes which electrodes are more dynamically coupled between them in a time-frequency window, and that the difference index $R_{\text{C}}$ was maximal at these 2 electrodes (see Fig. 8).

Additionally, we investigated the index $R_{ij}$ for the pairs FC4-F4, C4-F4 and FC4-C4. Thus, we could test whether these EEG channels constitute a cluster themselves. Significant outcomes of the permutation tests for the differences in the pair-wise synchronization index between conditions in this time-frequency range are depicted in Figure 9, and show a reduction of long-range interaction between electrode FC4 and each of the left temporo-parietal electrodes T7, TP7, P7. Similar tests on time ranges earlier than 175 ms or later than 300 ms produced no statistically significant differences between the two conditions.

We did not find a significant difference between conditions for the short-range phase coupling of the pairs FC4-F4, C4-F4 or FC4-C4. However, interestingly, the index $R_{ij}$ for these pairs did show maximum values for each of the conditions separately (Fig. 10A,B), indicating that the three electrodes constituted a synchronized cluster for processing both the supertonic and tonic chords.

Additionally, Figure 10 depicts for each condition the phase coupling for channels TP7 and P7, separately, with the rest of the electrodes. We can observe the higher values at electrode numbers No. 22 (TP7) and No. 30 (P7), which indicates a stronger phase synchronization between these electrodes for processing both harmonic regularities and irregularities. The aforementioned difference between conditions for the bivariate index of the EEG channel FC4 is illustrated in Figure 10E.

DISCUSSION

Neapolitan vs. Supertonic Chords

Most of the earlier studies using similar chord sequence paradigms presented Neapolitan chords as music-structural irregularities [Koelsch et al., 2000; Koelsch et al., 2002a,b; Maess et al., 2001]. Though this choice elicited very large ERAN amplitudes, the following two problems arise: (a) The Neapolitan chords have fewer pitches in common with the directly preceding chords than the other regular or tonic chords have, thus creating a larger degree of 'sensory dissonance'. Therefore, it is difficult to dissociate the processing of sensory dissonance from the processing of musical syntax. (b) Neapolitan chords also constitute...
an audible frequency deviation because the previous chords are presented in the same tonal key whereas the Neapolitan chords introduce pitches which are less frequent than the pitches of the regular tonic chords. Thus, the processing of frequency deviance (neurally represented by a frequency MMN component) and the processing of musical syntax could be overlapped. For this reason, it is crucially important to minimize the acoustic differences between music-syntactically irregular and regular chords by taking into account various acoustical features. Consequently, we used supertonic as our choice of irregular chords, which are in-key chord functions, and have even higher pitch correlations with the preceding harmonic context than those of the regular/tonic chords. So, in short, the reported findings indicate the component of the brain responses which is specifically associated with processing syntax in music since the other components due to acoustical differences were minimized.

ERP Analysis: Anterior Frontal Negativity

We reconfirmed the result of previous studies [Koelsch et al., 2000; Koelsch et al., 2002a,c], that processing of music-syntactically irregular chords relative to regular chords elicited an early right anterior negativity (ERAN).

Figure 5.

Late gamma activity. Difference between conditions of the global spectral power averaged across trials in the band 30–50 Hz for common reference (A) and spline Laplacian (B). The white contours denote regions where the difference between the two conditions is significant at 0.01 and 0.05 levels according to the permutation test over subjects. (C) Topographical map of the 38–50 Hz spectral power averaged in the time window 500–550 ms for spline Laplacian. The decrease in induced gamma activity is maximal at frontal electrodes (FZ, AF8, F8, and F9) and at parietal electrodes (CPZ, TP8, P8, and P9).

Figure 6.

Late gamma activity. Induced spectral power in the 30–50 Hz band for spline Laplacian computed for the music-syntactically regular (A) and irregular (B) chords. The increase relative to pre-stimulus levels in the time window between −100 ms and −300 ms was significant ($P < 0.01$) only in the regular condition.
This negativity was statistically significant in the time window from 160 to 220 ms and represented predominantly by frequencies below 8 Hz. The ERAN was more significant when the difference mean amplitude values were averaged over the ROIs at right fronto-central regions, but also clearly present in the left hemisphere. The ERAN component was assumed to reflect neural activity related to the processing of a harmonic expectancy violation [Koelsch et al., 2002a, 2005a; Tillmann et al., 2006]. Like earlier studies, the present data showed that the ERAN can be elicited under task-irrelevant conditions and also in nonmusicians, supporting the notion that listeners familiar with Western tonal music normally possess an implicit knowledge of music-syntactic regularities, even when not formally trained.

Spectral Power Analysis: Low Frequency Response

We investigated whether this ERAN component was mainly generated by a decrease in the spectral content of slow (<8 Hz) evoked oscillations, total power, or both. Evoked oscillations have a fixed phase latency across trials relative to the stimulus onset, whereas total oscillatory activity refers to oscillations both phase-locked and non-phase-locked to the stimulus onset. Our results demonstrated that the delta and theta total spectral power increases were concurrent with a phase-alignment in the

Figure 7.

SCA. Time-frequency plot of the difference between supertonic condition and regular condition for the cluster strength, in the frequency range <15 Hz, (A) using the mean of the mastoids behind the ears as reference and (B) after spherical spline Laplacian. (C) Topographical distribution of the difference between conditions of the synchronization strength between each electrode and cluster, obtained for 8 ROIs by averaging the 8–9 Hz index between 185 and 210 ms. A ROI-wise paired permutation test over subjects in each ROI was computed to detect the statistical differences between supertonic and tonic condition. The permutation test yielded significant differences (P < 0.01) at right central electrodes, the ROI which is indicated by the white ellipse.

Figure 8.

Temporal profiles of cluster synchronization. (A) Temporal evolution of the difference between the indices of the synchronization strength between cluster and oscillator, R_C, for both conditions (supertonic vs. tonic), computed for all electrodes. Additionally, the temporal profile of R_C for the supertonic (dotted) and tonic condition (line) is depicted for electrodes FC4 (B), C4 (C) and F4 (D). Contrary to the channels C4 and F4, the electrode FC4 elicits a steep decrease in the synchronization index for the irregular final chord.
Bivariate synchronization analysis. Differences between conditions of the pair-wise synchronization index in the frequency band 8–9 Hz and time window 185–250 ms. Differences between electrode FC4 and the rest of electrodes significant at the level P < 0.01, according to a permutation test over subjects, are plotted by a dashed line. The test yielded three significant effects, namely a decrease in synchronization between channel FC4 and each of the left temporo-parietal electrodes T7, TP7 and P7.

delta and theta band, respectively, after the final chord onset, and these effects were weaker in irregular than in regular chords. However, only the changes in the evoked spectral power were significant. Fronto-central regions bilaterally were involved in significant poststimulus changes in delta frequency phase-locked oscillations, while all scalp areas selected exhibited poststimulus changes in the spectral power of theta band evoked oscillations. These findings support the arguments against a strict lateralization of music processing to the right hemisphere [Koelsch et al., 2002], and rather show that neural resources for syntactic processes are shared between two hemispheres, in which inferior frontal regions play a major role [Tillmann et al., 2006]. The poststimulus increases in the theta phase-locked oscillations had a latency similar to that of the ERAN component (~190 to 200 ms), whereas the effect in the delta band was delayed, indicating that the different poststimulus bursts of oscillations could be complementary but not identical. When studying differences between conditions, the delta band revealed an effect for both phase-locked and total spectral power at fronto-central regions bilaterally.

Several EEG studies have reported two mechanisms that contribute to the generation of ERPs: a phase-resetting of the ongoing oscillatory activity and a neuronal response added to the ongoing oscillations [Basar, 1980; Brandt et al., 1991; Lopes da Silva, 1999; Makeig et al., 2002]. We consider that each model separately can only account for ERPs occurring in simple paradigms, involving basic sensory stimulus configurations, whereas for complex paradigms, such as in music processing, a contribution of both additive power and phase-resetting of oscillations is to be expected [Mazaheri and Jensen, 2006; Min et al., 2007]. Thus, our results can be interpreted within the framework of the current debate as an indication that both amplitude and phase-locking vary in response to stimulation [Herrmann et al., 2004b].

A previous study using oscillatory analysis in language comprehension paradigms has reported that grammatical violations lead to a higher degree of stimulus-evoked activity in the lower theta band than the grammatical conditions [Roehm et al., 2003]. This study claimed that an irresolvable conflict in language processing produces a reorganization in the sense of phase resetting. Rather, our results would indicate that it is the regular in-key chord, which may reorganize more coherently the spontaneous distribution of phase in the EEG and simultaneously elicit higher increases in the amplitude of the oscillations. Further investigations comparing specifically syntax processing in music and language should address this issue.

**Spectral Power Analysis: High Frequency Gamma Response**

Early evoked gamma activity did not differ between the conditions, yet significant differences were found in the induced gamma oscillations at a later stage of processing (around 500–550 ms). The lack of significant differences in the initial processing stage was possibly due to the fact that both regular (tonic) and irregular (supertonic) chords were correct musical objects themselves that would provide a similar outcome after the initial acoustical feature extraction and binding processes. In major keys, the supertonic is the in-key chord built on the second scale tone, which implies that this chord function cannot be detected as irregular by the occurrence of out-of-key tones. Only after the integration of the initial processes of feature extraction with the working memory representing the previous musical context, the differences between the final chords would be apparent and the subsequent stage of harmonic integration would differ. This is nicely reflected by the differences in the induced gamma activity appearing at a later stage of processing, due to a significant increase in the gamma spectral power during regular chord processing and the absence of a similar increase in the gamma spectral power during irregular chord processing. Therefore, our results suggest that induced gamma responses reflect the integration of bottom-up and top-down processes, within the framework of the match-and-utilization model (MUM) of Herrmann et al. [2004a]. According to the MUM, the comparison of stimulus related information...
Figure 10. Bivariate synchronization analysis. (A,B) Pair-wise synchronization index versus channel number (1–40) for electrodes F4 (No. 10), FC4 (No. 15) and C4 (No. 20) averaged in the frequency band 8–9 Hz and time window 185–250 ms, presented during processing regular (A) and irregular (B) chords. Note that the index $R_{ij}$ (phase coupling of electrode with itself) is always 1. (C,D) Same but for electrodes TP7 (No. 22) and P7 (No. 30). Maximum values appear at these same channels, No. 22 and No. 30. (E) Difference (supertonic minus tonic) of the bivariate synchronization index for electrode FC4 (No. 15), showing decreases in the phase synchronization with electrode positions T7, TP7, and P7 (No. 17, 22, 30).

with the memory contents produces a “match” or “mismatch” output, reflected in the early gamma band responses. This output can then be used for coordinating behavioral performance, for redirecting attention or for storage in memory. This “utilization” processes modulate the late gamma response. Similarly, in our context, after the processing of stimulus-related information and building up of a musical context, the comparison of these processes with long-term memory contents (such as abstract representations of music-syntactic regularities, possibly implemented at the right inferior frontal cortex) would lead to the different induced gamma activity. Consequently, these data also suggest that the harmonic integration requires the consolidation of top-down and bottom-up processes. We propose that the successful consolidation of these processes was manifested in the increase of induced gamma oscillations for the processing of regular chords. The irregular supertonic chords did not match so well with the harmonic long-term memory and, consequently, the gamma spectral power decreased. Our interpretation is further supported by Lentz et al. [2007], who recently demonstrated that matches of auditory patterns which are stored as representations in long-term memory are reflected in increased induced $\gamma$-band oscillations.

It is noteworthy to mention that the latency of this gamma effect (500–550 ms) is strongly reminiscent of the latency of the N5, which is an ERP component followed by ERAN in very similar paradigms [Koelsch et al., 2000, 2002a; Koelsch, 2005]. The N5 has been taken to reflect processes of harmonic integration: the final irregular chords are more difficult to integrate into the preceding harmonic context [Koelsch et al., 2000], and as a consequence they elicit a reduction of the amplitude of the late ERP waveforms, leading to the negative ERP component. This observation is coherent with the decrease of $\gamma$-band activity for the irregular chords relative to the regular chords in our study.

The spline Laplacian localized the induced gamma activity at the frontal (Fz, AF8, F8, and F9) and parietal (CPZ, TP8, P7, and P9) brain regions. This demonstrated the predominance of the prefrontal cortex in processing of musical syntax including the integration of final chord with the preceding harmonic context. The present data also showed an important role of temporoparietal regions, which is consistent with previous data of activations in the supratemporal cortex (anterior and superior STG) reported in both fMRI and EEG studies [Koelsch and Friederici, 2003; Koelsch et al., 2002c, 2003, 2005b]. Previous studies implicated the parietal lobe in harmonic processing [Beisteiner et al., 1999] and in auditory working memory [Platel et al., 1997]. Here, we propose that the gamma oscillations that mediate the integration of top-down and bottom-up processes at later stages are elicited in regions responsible for auditory working memory and long-term memory processing. This proposal is also consistent with previous reports of activations in response to music-syntactic irregularities in both inferior parietal regions and regions along the inferior frontal sulcus, both of which are known to play a role in auditory working memory [Janata et al., 2002; Koelsch et al., 2005b]. Notwithstanding, fMRI activations and changes in $\gamma$-band activity do not always correlate positively, because an increase in regional cerebral blood flow detected by fMRI could concur with a decrease in the $\gamma$-band activity. The former would be linked to an increased neural activity, but the latter would indicate that the local neural population is less synchronized.
Finally, there has been some debate on the possible relationship between the ERAN and the mismatch negativity (MMN). The MMN is a negative ERP component, which is elicited by deviant auditory stimuli in an otherwise repetitive auditory environment [Naatanen, 1992]. Both MMN and ERAN can be elicited in the absence of attention [Koelsch et al., 2001], while their amplitudes can be influenced by attentional demands [Loui et al., 2005; Waldorff et al., 1998]. These findings were based on traditional ERP averaging techniques which ignore the oscillatory content of the underlying neural response. Several studies have shown early oscillatory components of the MMN in the gamma band, particularly a decrease of stimulus-locked or evoked gamma activity onset [Fell et al., 1997], and a transient decrease in the induced gamma response [Bertrand et al., 1998]. In contrast to the MMN, no oscillatory components in the gamma band were found for the ERAN. The gamma band effect occurring at later processing stages (around 500–550 ms), presumably reflects primary harmonic integration (i.e., top-down, rather than bottom-up processing). Thus, our data also reflect that the processing of irregular chord functions involves implicit knowledge about the complex regularities of major/minor tonal music [Koelsch et al., 2001], whereas MMN mainly involves processing related to sensory aspects of acoustic information (different assumptions apply for abstract-feature MMNs [Paavilainen et al., 2001]).

**Decrease in Long-Range Alpha Band Phase Synchronization**

The global decrease in phase synchronization in the lower alpha band (8–10 Hz) evoked by the syntactically irregular chords (relative to the regular chords) 185–250 ms was primarily represented by the neural sources in right fronto-central and frontal electrode regions (FC4, C4 and F4). This decrease appeared to be due to a reduction of the phase coupling between these electrodes and other scalp regions. Using a bivariate synchronization index, we found that the phase locking between electrode FC4 and left temporo-parietal regions was significantly reduced during the similar time-frequency window. This characterized the decrease in the alpha band synchronization as a spatial long-range effect. Interestingly, the right fronto-central electrodes, where the reduction of phase synchronization was maximal, also elicited the strongest significant decrease in the spectral power of local theta oscillations and the larger amplitude of the ERAN. In a related study on musical expectancy [Janata and Petsche, 1993], EEG parameters, such as amplitude and magnitude-squared-coherence in various frequency bands, change over right frontal regions for varying degrees of violations of musical expectancy.

The relevance of long-range alpha synchronization in paradigms of complex multiple integration has been recently reported [von Stein and Sarnthein, 2000; von Stein et al., 2000] based on the functional measure of coherence or synchrony. More specifically, in the first of the mentioned studies, perception of stimuli with varying behavioral significance was shown not to be only driven by "bottom-up" processes but also to be modified by internal constraints such as expectancy or behavioral aim. The neural correlates of the internal constraints were interareal synchronization in the alpha (and theta) band. The hypothesized role of the alpha band in providing top-down control was explained as follows: alpha activity is present in the "idling" brain states (such as the activity in the visual cortex while closing the eyes). These brain states may thus reflect states without bottom-up input, and as such, the alpha rhythm may be an extreme case of top-down processing, which is modulated by purely internal mental activity (e.g., imaginary, thinking or planning) or by the degree of expectancy [Chatila et al., 1992]. The authors showed that top-down alpha and theta band cortical interactions are integrated with bottom-up gamma band activity during the successful processing of stimuli that are associated with behavioral relevance. This view of the alpha band is compatible with our results, showing that after the initial processing of the musical stimuli, the violation of the harmonic expectations was reflected in the top-down mechanism. Notice that the role of interareal phase coupling in the alpha band does not require lack of bottom-up processes, rather it may be just a second stage of processing, once the bottom-up interactions have taken place and the internal constraints dominate the modulation of the brain responses.

Further increases in between-regions coherences in the alpha band have been found in studies on mental imagery and mental performance of music [Petsche et al., 1997] and have also been claimed to be critically important for maintaining spontaneous functioning of the healthy brain [Bhattcharya, 2001]. These findings support the role of the alpha band in providing top-down control, by mediating the integration from multiple cortical areas which are activated during the task.

Our results indicate that the violation of musical expectancy was reflected in the electrical brain responses as a decrease in long-range alpha phase coupling due to top-down processing. The integration of the multiple cortical areas responsible for the early processing stages (such as the left temporo-parietal brain regions) with higher areas (mainly the inferior frontal gyrus), where the abstract rules of harmonic regularities are implemented, was weaker for the supertonic chord relative to the regular chord because it deviates from the stored harmonic expectations. Thus, a decrease in the alpha oscillations that possibly mediates this top-down processing was manifested.

Similar evidence for the interplay between right auditory and prefrontal cortex has been described for an MMN paradigm [Doeller et al., 2003]. Several studies support that many aspects of melodic processing rely on both superior temporal and frontal cortices. More specifically, functional imaging studies indicate that areas of the auditory cortex within the right superior temporal gyrus are involved in
the processing of pitch and timbre [Zatorre, 1988; Zatorre and Samson, 1991], and that working memory for pitch entails interaction between temporal and frontal cortices [Zatorre et al., 1994]. Hyde et al. [2006] found, in a musical (with tone deafness) brains, white matter changes in the right IFG area (BA 47) as correlates of a musical pitch processing, which was interpreted as an anomalous connectivity between frontal and auditory cortical areas. A PET study [Blood et al., 1999] reported positive correlations of activity in orbitofrontal and bilateral frontopolar cortex with increasing dissonance, and the predominance of inferior frontal areas has been further demonstrated in an MRI study investigating musical syntax processing where activation of this region increased for strong musical expectancy violations [Tillmann et al., 2003], but also for more subtle harmonic irregularities [Tillmann et al., 2006]. A recent extensive review of musical disorders provides further evidence for the interaction of frontal and temporal brain regions [Stewart et al., 2006]. More specifically, the left posterior planum temporale has been reported to be involved in the processing and primary storage of various complex sound patterns [Griffiths and Warren, 2002] and to play a role in bridging the external auditory information with further judgment [Saito et al., 2006].

Overall the phase synchronization analysis provided the first evidence for a role of the integration between the right inferior frontal cortex and left tempo-parietal regions in processing structural relations in music. Considering that the early stages of extraction of acoustic features and auditory sensory memory are already completed at this time, this information together with the auditory Gestalts and analysis of intervals would have to be implemented in the working memory. Here, we suggest that the decoupling between left tempo-parietal and right anterior regions for the harmonically incorrect chords reflected the mismatch between the working memory contents, which could lie in the left tempo-parietal regions, and the long-term memory contents (abstract model of harmonic regularities) stored in the prefrontal cortex. Nevertheless, future experiments should further elucidate the generality of this mechanism in syntactic processing of music.

In sum, the interesting outcome of our study was that different neural processes, which were distributed across the brain, complemented each other in order to perceive the harmonic structure of music. Different scales of cortical integration, ranging from local delta, theta and gamma oscillations, to long-range alpha phase synchronization, were here demonstrated to mediate the processing of syntax in music and, as a result of their interplay, contribute to the emergence of a "unified cognitive moment" [Varela et al., 2001].

ACKNOWLEDGMENTS

The authors were thankful to Carsten Allefeld for providing the source code of SCA and for useful discussions and valuable comments.

REFERENCES


**Band Phase Synchronization and Oscillations**


Band Phase Synchronization and Oscillations


Woldorff M, Hillyard SA, Gallen CC, Hampson SR, Bloom FE (1998): Magnetoencephalographic recordings demonstrate atten-


Zatorre RJ, Evans AC, Meyer E (1994): Neural mechanisms under-
AQ1: Kindly check whether the short title is OK as given.

AQ2: Please note that the year in reference Roehm et al., 2004 has been changed to 2003 in accordance with that given in the reference list. OK?

AQ3: Allefeld et al., (In press); Bialonski and Lehnertz, 2007 are not cited anywhere in the text. Kindly insert its citation at an appropriate place or delete it from the reference list.

AQ4: “Please check and confirm that the spelling of names, ordering of first and surnames (First MI Last), designations and spelling of affiliations are correct for all authors.”