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INTRODUCTION

Music performance at a professional level is probably
one of the most demanding tasks for the human central
nervous system. It involves the precise execution of very
fast and, in many instances, extremely complex physical
movements under continuous auditory feedback in an
unyielding context of social rewards and punishment.

The basis for the musician’s skill is the appropriate re-
trieval of these highly complex memorized motor pro-
grams. In this context, motor programs have to be acti-

vated only if necessary. In many musical situations, it is

necessary to inhibit motor programs. For instance, a typi-

cal scenario relevant for a pianist is the sight-reading of a

violin sonata. The accompanying pianist is required to

react to the timing of the violinist’s entry and tempo varia-

tions by rapidly adjusting his or her timing and tempo,

thereby activating and inhibiting motor programs. In gen-

eral, a characteristic feature of accomplished musicianship

is the appropriate activation (ACT) and inhibition (INH) of

motor memory traces under constrained timing conditions.
Musician’s dystonia (MD), a form of focal task-specific

dystonia (FTSD), is characterized by a degradation of these
motor memory traces. MD is a movement disorder, which
occurs while a musician is playing the instrument and is
marked by the painless loss of voluntary motor control of
extensively trained movements [Altenmüller, 2003].

In affected musicians, deficient inhibition of motor pro-
grams can be demonstrated on several levels [for a review,
see Lim et al., 2001]: (i) On a ‘‘micro-level,’’ involuntary
cramping of single fingers can be interpreted as the defec-
tive inhibition of inappropriate motor subroutines [Wilson
et al., 1993]. (ii) On a ‘‘macro-level,’’ the central-nervous
preparatory sets of movements seem to be disinhibited.
This has been reported, for instance, in data of the Bereit-
schaftspotential (BP) [Deuschl et al., 1995; Yazawa et al.,
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1999] and the contingent negative variation (CNV) [Lim
et al., 2001, 2004].

In a previous study [Hummel et al., 2002], deficient inhi-
bition of simple motor patterns was demonstrated in six
patients with FTSD using TMS and EEG-alpha oscillatory
activity. To the best of our knowledge, one relevant ques-
tion remained unaddressed: Does FTSD also affect the in-
hibition of long-term overlearned motor programs? Conse-
quently, the aim of the present study was to investigate
with multichannel EEG the neural correlates associated
with the ACT and INH of a pianistic long-term over-
learned motor program in pianists with MD.

Within the primary sensorimotor cortex of humans, os-
cillatory activity in the alpha (8–13 Hz) and beta (13–
30 Hz) frequency bands is modulated during the prepara-
tion and performance of movements [Cassim et al., 2001;
Salmelin et al., 1995]. Furthermore, functional coupling
between brain regions has been demonstrated to mediate
sensorimotor integration [Gerloff et al., 1998b; Hummel
and Gerloff, 2005].

Accordingly, to clarify the aforementioned question,
the study of (i) the standard slow shift of movement-
related cortical potentials (MRCPs) was complemented
with (ii) the spectral power of the oscillations and (iii) the
phase coupling between brain regions, in a paradigm
mimicking the unyielding time constraints of professional
musicianship.

So far, there have been no studies of phase synchroniza-
tion in patients with FTSD. However, in patients with
other diseases in which deficient inhibition plays a role in
the pathogenesis, such as Tourette’s syndrome, attention
deficit hyperactivity disorder, or Parkinson’s disease, corti-
cal inter-regional synchronization has been associated with
defective corticocortical interactions [Barry et al., 2002;
Serrien et al., 2005; Silberstein et al., 2005].

In the present study, the specific motor program had to
be executed or inhibited, this last condition referring to the

motor program being suppressed. Our main hypotheses
were as follows. First, the sensorimotor integration
required for fine motor control would be modulated at the
cortical level by local oscillatory activity and functional
coupling among cortical regions. Second, under patho-
physiological conditions with deficient inhibitory circuits
(as in FTSD), we speculated that this type of inhibitory
control should be disturbed. Third, the defective inhibition
should be manifested in differences in focal spectral power
and inter-regional functional coupling for pianists with
MD and healthy pianists.

MATERIALS AND METHODS

Participants

Nine healthy pianists (eight males, age range 26–47 years,
mean 36.5 years) and nine pianists with MD (eight males,
age range 27–50 years, mean 35.3 years) participated in
this study. In all patients, the right hand was affected. Fur-
ther information on the patients is given in Table T1I. All
participants were professional pianists (accumulated prac-
tice time over 10,000 h). Eight of the nine participants in
each group were right-handed, according to the Edinburgh
inventory [Oldfield, 1971]. All subjects gave informed con-
sent to participation in the study, which had received ap-
proval of the Ethics Committee of the University of Music
and Drama, Hanover.

Experimental Design

Participants were seated at a digital piano (Wersi Digital
Piano CT2) in a light-dimmed room. They sat comfortably
in an arm-chair with the left forearm resting on the left
armrest of the chair. The right forearm was supported by a
movable armrest attached to a sled-type device that
allowed effortless movements of the right hand along the
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TABLE I. Patients with musician’s dystonia

Patient
Age

(years) Sex
Year of

manifestation

Affected digits
of the right

hand Therapy

Accumulated
practice
time (h) mSD-IOI

Dyst_01 50 M 1989 D3 > D4,5 None 47,866 21.83
Dyst_02 27 M 2000 D3,4 None 33,488 18.08
Dyst_03 41 M 1994 D4 None 76,622 18.32
Dyst_04 38 M 1992 D3,4,5 Botulinum toxin

(2 years after
last injection)

25,700 14.15

Dyst_05 34 M 1998 D3 None 24,934 32.12
Dyst_06 35 F 1993 D1,2 None 13,104 15.65
Dyst_07 29 M 2002 D4,5 None 35,594 16
Dyst_08 30 M 2000 D3 None 15,000 15.92
Dyst_09 34 M 1999 D3 Botulinum toxin

(6 months after
last injection)

20,202 –

The last column shows the mean standard deviation of the interonset intervals (mSD-IOI) of all scales, previously reported to be a pre-
cise indicator of the motor impairment in pianists with focal dystonia (see Performance Analysis section). For healthy pianists, this mea-
sure was between 8.5 and 16.5.
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keyboard of the piano. The keyboard and the right hand
of the participant were covered with a board to prevent
participants from visually tracking hand and finger move-
ments. Instructions were displayed on a TV monitor (angle
48) located above the piano. In a modified Go/NoGo-
study, the task was to play upward C-major scales over
two octaves. Scales were played as semiquavers, and the
tempo was standardized at 80 beats/min for a quarter
note (5one key stroke every 187.5 ms) and paced by met-
ronome-like auditory cues. Scales were played using the
conventional C-major fingering: 1,2,3,1,2,3,4,1,2,3,1,2,3,4,5
(The fingers 1–5 refer to thumb, index, middle, ring, and
little finger, respectively). The specifications of the Go/
NoGo-study were as follows: A first visual cue (S1) indi-
cated that participants should be prepared to start playing
soon. The metronome was started 2,750 ms after S1. Partic-
ipants were instructed to play the first note of any scale
coinciding with the third metronome beat. Two hundred
and fifty milliseconds before the third metronome beat, a
second visual cue (S2) was presented indicating that the
participant should either execute (Go, green ellipse) or not
execute (NoGo, red ellipse) the motor sequence (see Fig.

F1 1). The selection of 250 ms after S2 for playing the first
note was based on previous studies of De Jong et al. [1990]
and Logan et al. [1984], which have shown that the stop-
signal reaction time, measuring the inhibition of an initi-
ated response, is between 200 and 250 ms.

It is important to note that the associations between the
green/red ellipses and Go/NoGo cues were easily learned
by all participants because of their familiarity with the uni-

versal color code of traffic lights: green to go and red to
stop. Because the timing of the entrance of the musicians
and the tempo were indicated by the metronome-like audi-
tory cues, we chose a visual stimulus as Go/NoGo cue to
avoid interference with the auditory modality.

EEG and EMG Recordings and Preprocessing

Continuous EEG was recorded from 22 electrodes placed
over the scalp according to the extended 10–20 system ref-
erenced to linked earlobe mastoids. Additionally, a right
vertical electrooculogram was recorded to monitor blinks
and eye movements. Impedance was kept under 5 kX.
Data were sampled at 500 Hz; the upper cutoff was
100 Hz, and the time constant was set to DC (DC ampli-
fiers and software by NeuroScan, Herndon, VA). One
bipolar EMG channel was recorded from surface electro-
des positioned over the right flexor pollicis longus muscle,
located 6 cm apart from each other. The bandpass filters
for EMG were set to 5 Hz (highpass) and 100 Hz (low-
pass). Visual trigger stimuli, key strokes, and metronome
beats were automatically documented with markers in the
continuous EEG file. Performance was additionally
recorded as MIDI (Music instruments digital interface) files
using a standard MIDI sequencer program.

We used the EEGLAB Matlab Toolbox [Delorme and
Makeig, 2004] for the visualization and filtering of the EEG
signals. After rejecting segments of data with artefacts
such as blinks, eye movements, and muscle activity as
determined by visual inspection, we applied a notch filter
at 50 Hz (49–51 Hz) to eliminate power-line noise. Trials
that included errors, such as a response following a NoGo
target or a miss on a Go cue, were not included in the
analysis. The data epochs representing single experimental
trials time-locked to the onset of the second visual (S2) cue
were extracted from 25,000 to 1,000 ms, resulting in
approximately n 5 100 artifact free epochs per condition
(Go/NoGo) and participant.

Data Analysis

We performed the following three analyses: (i) standard
time averaging technique to analyze the slow shift of
MRCPs; wavelet based time–frequency representations
(TFR) to analyze (ii) the spectral power of the oscillatory
contents and (iii) the spatiotemporal dynamics of the func-
tional coupling.

The functional interaction between brain regions is
believed to be best characterized by transient phase rela-
tionships between the oscillatory activities of underlying
neuronal populations, termed as phase synchronization
[Sauseng et al., 2005; Tass et al., 1998; Varela et al., 2001].
Consequently, the analysis (iii) was done with phase syn-
chronization approaches. More specifically, it was per-
formed by means of the synchronization cluster analysis
(SCA) [Allefeld and Kurths, 2004].
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Figure 1.

Scheme of the experimental paradigm. (A) Time course of the

presentation of the first visual cue (S1) and second visual cue

(S2). (B) Time evolution of the metronome-like auditory cues

and motor performance. The first metronome beat appeared at

1,250 ms prior to S2. Pianists had to begin to play the C-major

scales at the third metronome beat (�250 ms).
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MRCPs were derived by averaging the raw trials about
the Go/NoGo signal (S2) for each subject and condition,
and the result was baseline-corrected. The baseline was
computed from 4,500 to 4,000 ms prior to S2 (500–0 ms
before S1).

For the synchronization analysis, a modified version of
the nearest-neighbor Hjorth Laplacian algorithm computed
by Taylor’s series expansion [Lagerlund et al., 1995] was
applied, to avoid the spurious increase in correlations
introduced by the common reference [Nunez et al. 1997].

A complex Morlet wavelet was used to extract time–fre-
quency complex phases /ik(t,f), at an electrode i and epoch
k, and amplitudes of the EEG signal x(t). The frequency
domain was sampled from 2 to 40 Hz with a 1 Hz interval
between each frequency.

We studied changes in the spectral content of the oscilla-
tory activity by means of the wavelet-based TFR of the
energy [Tallon-Baudry et al., 1997]. After removing the
baseline level, we normalized the TFR energy with the
standard deviation of the baseline period (between 24,500
and 24,000 ms prior to S2). The normalization procedure
reduced the effects of intersubject and interelectrode vari-
ability.

Oscillatory activity in the alpha (8–13 Hz) and beta (13–
30 Hz) band was analyzed, based upon its sensitivity to
movement-related changes in cortical oscillatory activity
in humans [Gerloff et al., 1998b; Pfurtscheller et al., 1997;
Salmelin et al., 1995; Tiihonen et al., 1989].

The assessment of phase synchronization between the
multichannel EEG signals was done by means of the SCA
[Allefeld and Kurths, 2004; Allefeld et al., 2005], a method
that provides information about both the global synchroni-
zation strength and the topographical details of the syn-
chronization in event-related brain responses. The SCA has
been successfully applied to EEG data in language and
music processing paradigms [Allefeld et al., 2005; Herrojo
et al., in press). Following this approach, we computed the
following measure:

RiC ¼
1

n

X

k

exp i /ik � Ukð Þð Þ
�����

����� ð1Þ

where n is the number of epochs, /ik is the complex phase
at an electrode i and epoch k, and Fk is the phase of the
synchronized cluster that characterizes in each epoch the
dynamics of the array as a whole and which is the result
of a circular weighted mean of the individual oscillator
phases. The index RiC estimates the phase locking between
each individual oscillator of the whole ensemble and the
synchronized cluster. This index is nearly 0 when there is
no phase synchrony and approaches 1 for strong phase
synchronization.

For each frequency, the index RiC [Eq. (1)] was averaged
across the electrodes of the sensorimotor and prefrontal
cortex to obtain the cluster strength RC in these regions.

The investigation of the phase synchronization focused
on the theta (4–8 Hz) and alpha (8–13 Hz) frequency

bands, due to the relevance of these slow oscillations in
mediating long-range cortical functional coupling [von
Stein and Sarnthein, 2000].

In the beta (13–30 Hz) band, we did not observe
between-condition or between-group changes in the meas-
ures of phase synchronization, which could be due to the
specific task. Consequently, this band was left out of the
present manuscript.

EMG Analysis

The raw EMG signal was rectified and smoothed via the
root mean square (RMS) algorithm over a window of 10
ms. For ensemble average EMG curves, we first normal-
ized the amplitude of the smoothed rectified trials to the
mean value within each epoch, [25 s, 5 s], and then aver-
aged it across trials. The amplitude mean value in the analy-
sis interval and the EMG peak were selected as EMG activ-
ity parameters. The analysis interval for Go trials was 250–
2,875 ms, coinciding with the time the pianists had to play;
for NoGo trials, the selected time window was 0–350 ms
to detect whether pianists initiated a movement around
250 ms in spite of the NoGo signal.

Performance Analysis

The temporary unevenness of interonset intervals (IOI,
time between note onsets of two subsequent notes) was
previously reported to be a precise indicator of pianists’
motor control and its impairment in pianists with focal
dystonia [Jabusch et al., 2004]. For each participant, tempo-
rary unevenness was analyzed by calculating the mean
standard deviation of IOI (mSD-IOI) of all scales. Motor
performance was compared with the EEG measures to
look for correlations between the degree of motor impair-
ment in pianists with MD and the EEG response.

Statistical Analysis

To assess the statistical differences in the spectral power
and phase synchronization indices, we first averaged for
each subject and condition the indices across the electrodes
in the regions of interests (ROIs) defined for each case
(described below). Next, for each time–frequency point,
the averaged indices were analyzed by means of synchron-
ized permutations of a 2 3 2 (Group 3 Condition) design
[Good, 2005]. Synchronized permutations are based on the
nonparametric pairwise permutation test [Good, 2005] and
are recommended to obtain exact tests of hypotheses when
multiple factors are involved. They are generated, for
instance, by exchanging elements between rows in one col-
umn and duplicating these exchanges in all other columns.
Thus, synchronized permutations provide a clear separa-
tion of main effects and interactions. Here, it was neces-
sary to use a nonparametric test, because the distributions
cannot be assumed to be Gaussian.
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With the synchronized permutations approach, the
mean spectral power was analyzed between 0 and 900 ms
(to avoid windowing effects, since the epochs were
extracted up to 1,000 ms) in the alpha (8–13 Hz) and beta
(13–30 Hz) bands separately. Similarly, in the same time
window and in the separate theta (4–8 Hz) and alpha (8–
13 Hz) bands, the index of phase synchronization between
cluster and electrode, RiC, averaged across the correspond-
ing ROIs was analyzed. The statistical differences of the
grand-averages of MRCP waveforms were also analyzed
by means of a 2 3 2 (Group 3 Condition) design of
synchronized permutations. In this case, selected electrode
sites were pooled to three topographical ROIs (see below),
and in each one the synchronized permutations were
computed.

Differences were considered significant if P < 0.05. Sig-
nificance levels for multiple comparisons of same data
pool were obtained by a Bonferroni-correction of the 0.05
level.

The regions of interest were selected on the basis of a
priori anatomical and physiological knowledge [Gerloff
et al., 1998b; Hummel et al., 2002]. For the analysis of the
spectral power and MRCP waveforms, we chose electrodes
that cover the lateral premotor cortex, the SM1 bilaterally
(left: FC3, C3, CP3; right: FC4, C4, CP4), and the mesial
frontocentral cortex including the SMA (FCz, Cz, CPz). For
these topographic analyses, the threshold value after the
Bonferroni-correction was thus 0.017. In the case of the
phase synchronization analysis, we included additionally
the prefrontal electrodes (F3, Fz, F4) due to the role of the
prefrontal cortex in top–down processing [Sauseng et al.,
2005; von Stein and Sarnthein, 2000]. We hypothesized that
the prefrontal electrodes could be functionally coupled to

the EEG channels in the sensorimotor cortex for the Go/
NoGo decision making [Shibata et al., 1997, 1998].

The univariate analyses of the statistical differences
between conditions or between groups were performed
with the use of a nonparametric pairwise permutation test
[Good, 2005]. As previously stated, for multiple compari-
sons of same data pool significance levels, we used the
Bonferroni-correction. Between-group differences in the be-
havioral and electromyographic data were also analyzed
using a nonparametric pairwise permutation test.

RESULTS

Behavioral Data

The number of NoGo trials that included errors (for
instance, a motor response following the NoGo cue) was
not statistically different between pianists with MD (8.5;
2.0–39) and healthy pianists (5.0; 1.0–42; permutation test
across subjects, P > 0.05). In the Go condition, the missed
scales, namely a scale not played, did not differ statisti-
cally between pianists with MD (0.67; 0–4) and healthy
pianists (0.87; 0–2) either. As expected, the mSD-IOI, previ-
ously described for quantification of motor impairment in
pianists with MD [Jabusch et al., 2004], differed between
both groups (pianists with MD: 17.2 ms; 14.2–32.1; healthy
pianists: 12.7 ms; 9.0–16.5; P < 0.01). Further information
on the behavioral data is provided in Table T2II.

EMG Data

In Go trials, the amplitude mean value over the interval
250–2,875 ms differed significantly between healthy pia-

J_ID: HBM Wiley Ed. Ref. No.: 08-0187.R1 Customer A_ID: HBM 20700 Date: 22-NOVEMBER-08 Stage: I Page: 5

ID: kumaris Date: 22/11/08 Time: 13:54 Path: J:/Production/HBM#/Vol00000/080190/3B2/C2HBM#080190

TABLE II. Behavioral data of healthy pianists (Cont) and patients with musician’s dystonia (Dyst)

Participant

Total number
of scales

during Go
Number of

scales missed

Number
of scales with

early onset

Number of
scales with

wrong notes mSD-IOI

Number of
trials during

NoGo

Number of trials with
onset of a note

in spite of NoGo

Cont_01 101 0 0 0 16.51 97 13
Cont_02 101 0 0 0 10.05 97 42
Cont_03 101 1 0 0 11.35 99 2
Cont_04 101 1 0 0 14.97 97 13
Cont_05 101 0 0 0 8.97 97 1
Cont_06 82 0 0 0 11.74 117 2
Cont_07 99 0 0 0 15.78 100 1
Cont_08 101 0 0 0 12.72 97 5
Cont_09 97 4 0 0 12.76 100 14
Dyst_01 101 2 0 0 21.83 101 23
Dyst_02 101 0 0 0 18.08 101 6
Dyst_03 101 2 0 0 18.32 101 39
Dyst_04 97 0 0 0 14.15 101 15
Dyst_05 97 0 0 0 32.12 101 11
Dyst_06 101 2 0 0 15.65 101 2
Dyst_07 101 0 0 0 16 99 3
Dyst_08 101 1 0 0 15.92 97 3

Scales missed refers to scales not played during Go. Early onset occurred when the first note of the scale was played before the Go/
NoGo signal. The performance analysis of the last patient could not be completed because of lost MIDI data.
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nists (20 lV; 12–36 lV) and pianists with MD (30 lV; 21–
50 lV; P < 0.05, permutation test across subjects), due to
higher EMG amplitude in patients. The EMG peak, indi-
cating the maximum value in the amplitude curves, did
not differ statistically between healthy pianists (59 lV; 38–
79 lV) and pianists with MD (78 lV; 54–125 lV; P > 0.05).
As indicated before (see Table II), in the NoGo condition,
participants initiated movements of the thumb in some tri-
als in spite of the NoGo signal. Interestingly, the number
of NoGo trials in which bursts of EMG activity were
observed was higher than the number of trials in which
the first key of the MIDI piano was actually played (Table
II). This result confirmed that inhibition in our paradigm
demanded active suppression of the motor program.

Bursts of raw EMG activity in a NoGo trial are depicted
in Figure F22A for one patient and one healthy pianist. As in
Go trials, the mean-rectified and RMS-smoothed value of
the EMG signal was computed (Fig. 2B). The EMG peak
was found significantly higher in pianists with MD (14 lV;
5.2–50 lV) than in healthy ones (5.5 lV; 3.1–16 lV). Con-
trary to the Go trials, the amplitude mean value in both
groups was not statistically different (healthy pianists:
3.3 lV; 1.1–10 lV; patients: 5.7 lV; 2.4–20 lV; P > 0.05).
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Figure 2.

EMG, right flexor pollicis longus muscle of the right hand. (A)

Raw data of a single NoGo trial are given for a control (C1) and

a patient (P2). Bursts of EMG activity can be observed before

200 ms in spite of the NoGo signal. (B) Rectified and smoothed

EMG activity in the NoGo condition for the same patient (P2,

dashed line) and healthy pianist (C1, bold line) as in (A). Peaks

of EMG activity averaged across trials can be observed despite

the NoGo signal.

Figure 3.

Movement-related cortical potentials (MRCPs) analysis. (A)

Grand average of the MRCPs for Go trials in pianists with MD

(blue line), healthy pianists (black line) and difference (MD minus

healthy, red line). (B) Same as in (A) but for NoGo trials. (C)

Latency periods, in which the main effect of Group for the

MRCPs is statistically significant (P < 0.017, Bonferroni-cor-

rected), calculated with respect to synchronized permutation

test in three ROIs. The P values are presented for three differ-

ent areas of electrodes: LSM (left sensorimotor cortex), ML

(midline), RSM (right sensorimotor cortex). (D) Time windows,

in which the main effect of Condition for the MRCPs is statisti-

cally significant (P < 0.017), calculated with respect to a

synchronized permutations test in three ROIs. The stronger sig-

nificant effect was found in the ML electrodes.
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Movement-Related Cortical Potentials

In FigureF3 3A,B, the grand-average MRCP waveforms for
pianists with MD and healthy pianists are depicted at elec-
trode FCz for Go and NoGo conditions. Both groups
showed similar premovement activity over the sensorimo-
tor cortex, characterized by the slow negative MRCP
termed as CNV. In our paradigm, the CNV reflected the
maintenance of a motor response in readiness [Haider
et al., 1981]. In both conditions, the premovement negativ-
ity returned to baseline levels. During ACT, we observed a
postmovement negative peak more pronounced in pianists
with MD, whereas the NoGo condition was characterized
by a positive shift post-S2. The positive peak after S2,
which could be related to the inhibition of the motor pat-
tern, had larger amplitude across sensorimotor areas in
healthy pianists than in pianists with MD. The synchron-
ized permutations yielded a significant (P < 0.017) main
effect of Group in the three ROIs of the sensorimotor cor-
tex (Fig. 3C), which was more prominent in the time win-
dow 370–500 ms. This result indicated that in pianists with
MD, the MRCPs after the Go/NoGo cue were less positive
over all ROIs in the sensorimotor cortex. A significant
main effect of Condition was found in the frontocentral
regions around �280 ms, � 430 ms, and >800 ms (Fig.
3D). The first latency corresponded with the positive peak
after S2 in the NoGo condition, possibly related to the
relaxation after motor preparation. The second latency

referred to the negative peak after the onset of playing in
the Go condition. No significant interaction of the factors
Group 3 Condition was found.

An univariate permutation test across subjects in the
NoGo condition yielded a significant between-group dif-
ference (P < 0.017) in the post-S2 positive peak at the mid-
line electrodes within the latency period 270–308 ms, sug-
gesting that the weaker inhibition for the patients group
was localized in the mesial frontocentral cortex.

Spectral Power Analysis

The spectral power in the alpha band (8–13 Hz) aver-
aged across the sensorimotor regions for each group sepa-
rately is presented in Figure F44. In both groups, we
observed a decrease relative to the baseline in the ampli-
tude of the alpha oscillations after the beginning of the
metronome beat in the Go and NoGo conditions. No sig-
nificant main effects or interaction of the factors Group or
Condition were found.

Figure F55 shows the time–frequency maps of the beta
band (13–30 Hz) spectral power averaged across the elec-
trodes over sensorimotor regions in the INH condition. As
in the alpha frequency range, we observed for both groups
a reduction, relative to the baseline, in the power of the
beta oscillations following the beginning of the metronome
(not shown). After the NoGo cue, the decrease in beta
oscillations attenuated slowly, returning to baseline levels.
An increase of 650–900 ms in the power of beta oscillations
manifested itself, which was weaker for pianists with MD
than for healthy controls. This general picture was con-
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Figure 4.

Time course of spectral power of total alpha (8–13 Hz) oscilla-

tory activity averaged across the electrodes over the sensorimo-

tor areas during ACT for pianists with MD (A) and healthy pia-

nists (B). Similar measure during INH for pianists with MD (C)

and healthy pianists (D). In all cases, we observed a decrease

relative to baseline in the alpha spectral power, which is sus-

tained after S2. Healthy pianists showed a stronger decrease in

the alpha oscillatory activity than pianists with MD.

Figure 5.

Beta spectral power. TFR energy averaged across electrodes in

sensorimotor areas in the 13–30 Hz range and after S2 for pia-

nists with MD (A), for healthy pianists (B), and between-group

difference (C, A–B). The white contour denotes the region in

which the between-group difference is significant at 0.003 level

(Bonferroni-corrected) according to the permutation test.
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firmed in all individual pianists with MD and healthy
pianists.

The synchronized permutations did not reveal a signifi-
cant main effect of Group, but of Condition, in the time–
frequency window 700–900 ms and at 16–26 Hz (P <

0.003, Bonferroni-corrected). This result indicated that, in-
dependently of the Group, Go and NoGo trials differed at
the late stage. Further, in the 20–30 Hz frequency range
and with the time spans of 550–650 ms and 790–900 ms,
cortical oscillatory activity differed between musicians
with and without MD depending on the task condition
(significant interaction of the factors Group 3 Condition, P
< 0.003).

The univariate permutation test across subjects in the
NoGo condition revealed a significantly smaller (P <
0.003) spectral power increase of the beta oscillations
between 23 and 30 Hz and at a latency of 850–900 ms for
pianists with MD compared with healthy pianists. The
increase in the TFR energy of beta oscillations for pianists
with MD was weaker than for healthy pianists (see Fig.F6 6)
over the left premotor and sensorimotor cortex (FC3, C3)
and mesial frontocentral cortex (FCz, Cz) and extended to
prefrontal regions (F3, Fz).

Synchronization Cluster Analysis

NoGo trials were associated with a robust increase in
the degree of global synchronization RC in the theta and
lower alpha band (7–8 Hz) with a time span of 200–
400 ms, thence coinciding with the latency when the par-
ticipants were required to begin playing (Fig.F7 7A,B). This

increase was more enhanced for healthy pianists than for
pianists with MD (Fig. 7C). Interestingly, we found no
changes in phase synchronization after the Go signal in
any of the groups or in the between-group difference
(results not shown).

We found a significant main effect of the factor Condi-
tion in the theta band (5–8 Hz) with a latency period of
120–470 ms and in the alpha band (8–13 Hz) between 220
and 450 ms. This indicated that, independently of Group,
the global phase synchronization was different for Go and
NoGo trials, or more specifically, it was higher during
INH, because during ACT no changes were observed. A
significant interaction of the factors Group 3 Condition
was found in the theta band (6-8 Hz), with the same la-
tency as in the main effect Condition and also in the alpha
band (8–9 Hz) between 170 and 320 ms. The significant
interaction reflected that the phase synchronization effects
differed between musicians with and without MD depend-
ing on the task conditions around the time when playing
had to be activated or inhibited (�250 ms). No main effect
of factor Group was found.

To test our main hypothesis, whether the functional cou-
pling during INH is impaired for pianists with MD com-
pared with healthy pianists, we computed a univariate
permutation test across subjects (Fig. 7C). A significant
effect (P < 0.005, Bonferroni-corrected) was found between
230 and 330 ms and at 7–8 Hz, due to lower global
synchronization for pianists with MD than for healthy
pianists.

The topography of the phase synchronization index,
averaged over the time window 230–330 ms and frequency
range 7–8 Hz, is illustrated in Figure F88. Note that in pia-
nists with MD the synchronized cluster consisted only of
electrodes FCz and Fz (Fig. 8A), whereas in healthy pia-
nists the synchronized structure included also the elec-
trode Cz and the contralateral sensorimotor regions (Fig.
8B). Compared with healthy pianists, in pianists with MD
(Fig. 8C), we observed a pronounced decrease in the phase
synchronization between the supplementary motor cortex
(Cz) and left premotor and sensorimotor electrodes (FC3,
C3, CP3).

DISCUSSION

Inhibition

Our study focused on the execution and inhibition of
long-term overlearned motor programs, due to its rele-
vance in real playing conditions. Our assumption was that
in the nonretrieval condition, motor memory traces,
strongly activated after the first metronome beat, needed
to be suppressed after S2 [Hummel et al., 2002].

A number of studies have supported the hypothesis that
FTSD is associated with impaired inhibitory function at
multiple levels of the central nervous system [Chen et al.,
1995, Yazawa et al., 1999; Siebner et al., 1999]. At the be-
havioral level, electromyographic [Cohen and Hallett,
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Figure 6.

Topographical map of the 23–30 Hz difference (MD minus

healthy) spectral power averaged in the time window 860–900

ms. The beta activity is less positive in pianists with MD than in

healthy pianists, an effect which is maximal over the left premo-

tor and sensorimotor cortex (FC3, C3), mesial frontocentral

cortex (FCz, Cz), and prefrontal regions (F3, Fz).
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1988; Stinear and Byblow, 2004] and kinematic [Odergren
et al., 1996; Serrien et al., 2000] studies of FTSD have dem-
onstrated the presence of cocontraction of the forearm and
hand musculature, resulting in excessive and uncontrolled
force output and, more generally, impaired sensorimotor
integration.

Evidence from studies of neurophysiological function
and TMS further supports deficient corticocortical and
intracortical inhibition in focal hand dystonia [Gerloff
et al., 1998a; Hummel et al., 2002; Ziemann et al., 1996].

In the present study, we aimed at studying a task that is
closer to naturalistic piano performance. Accordingly, we
imposed higher temporal constraints on the task, we used
a larger sample of patients suffering from MD, and we
had healthy musicians as controls.

In this setting, (i) the role of the interelectrode functional
coupling in the sensorimotor integration of inhibitory proc-
esses turned out to be the most relevant physiological
marker. This outcome could be related to the specific task
and to the high temporal constraints. Our study further
showed that in pianists with MD, the nonretrieval of the
motor program was associated with (ii) a weaker positive
shift after-S2 over cortical sensorimotor areas and (iii) a
weaker increase in local beta oscillations at around 850 ms
over the left and mesial sensorimotor and prefrontal (F3,
Fz) cortex.

Finally, the EMG peak in NoGo trials was found to be
significantly higher in pianists with MD than in healthy
pianists. Our findings, thus, offer evidence that patients
with MD, as compared to healthy pianists, have a signifi-
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Figure 7.

Synchronization cluster analysis during INH. The time–frequency

plots of the cluster strength, RC, averaged for the INH condi-
tion across electrodes over sensorimotor and prefrontal
areas, are presented in the frequency range 4–13 Hz for
pianists with MD (A), for healthy pianists (B), and for the
between-group difference (C, A–B). A pointwise paired

permutation test between groups yielded significant differ-
ences (P < 0.005) between 230 and 330 ms and at 7–8 Hz,
due to higher global synchronization for healthy pianists
than for pianists with MD in this time–frequency window.
This region is indicated by the green contour.

Figure 8.

Topographical distribution of the synchronization strength

between each electrode and cluster, averaged over the time win-

dow 230–330 ms and frequency range 7–8 Hz, for pianists with

MD (A), for healthy pianists (B), and for the between-group dif-

ference (C, A–B). A pronounced decrease in the phase synchro-

nization between the supplementary motor cortex (Cz) and left

premotor and sensorimotor electrodes (FC3, C3, CP3) was

observed for pianists with MD compared with healthy pianists.
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cantly higher innervation input of the flexor pollicis longus
during NoGo trials. This outcome supports the main hy-
pothesis of deficient inhibition in pianists with MD.

Movement-Related Cortical Potentials

Similar premovement activity over the sensorimotor cor-
tex, as reflected in the CNV, was observed in both healthy
pianists and those with MD. Previous studies reported in
musicians with MD higher amplitude and laterality in the
CNV prior to motor tasks [Ikeda et al., 1996; Lim et al.,
2004]. Our data show a trend to higher amplitudes in the
late phase of the MRCP prior to S2, albeit nonsignificant.
This discrepancy can be ascribed to the different design of
our study. Furthermore, in the study of Lim et al. [2004],
the patients were more strongly affected by FTSD as com-
pared with those in the present investigation.

The post-S2 resolution of the negative slow MRCPs
showed a main effect of Condition and Group over the
sensorimotor cortex, with a topographic maximum at the
midline electrodes.

Moreover, in NoGo trials, the between-group positive
shift in the MRCPs was significantly different over the
midline regions with a latency of 270–308 ms. This out-
come further stressed the relevance of the mesial fronto-
central cortex during INH.

Nevertheless, some alternative interpretations of this
finding merit consideration. First, no significant interaction
of the factors Group 3 Condition was found. Therefore,
the group differences in the univariate permutation test
must be taken cautiously. Second, the latency of 270–
308 ms is shortly after the time of the withheld movement
during the NoGo trial. This result could indicate that the
positive shift in the MRCPs around this latency reflects the
relaxation of the mesial frontocentral once the movement
has been successfully suppressed, rather than actively
inhibited. Note, however, that the role of these brain
regions in the Go and NoGo trials is consistent across the
multivariate tests.

Our data, thus, emphasize the role of the mesial fronto-
central cortex, including the region of the SMA, in the acti-
vation and deactivation of motor programs. Recent studies
relating the SMA activation to MRCP amplitude changes
have emphasized the role of frontocentral midline electro-
des (Fcz and Cz) for various motor behaviors [MacKinnon
et al., 1996; Marsden et al., 1996]. Regarding inhibitory
processes, new findings show that the SMA mediates inhi-
bition of motor plans [Sumner et al., 2007].

Increases of Beta Spectral Power After Offset of

Motor Imagery

Research in motor tasks reported over sensorimotor
areas decrease of task-related alpha power associated with
ACT [Gerloff et al., 1998b; Hummel et al., 2002], whereas
during INH task-related alpha power increase was found

[Hummel et al., 2002] AQ4. However, the main empirical evi-
dence of the increases in alpha oscillations has been pro-
vided over brain areas that are not task-relevant [for a
review, see Klimesch et al., 2007].

In our study, the reduction of the power of alpha oscilla-
tions persisting after both Go and NoGo cues may indicate
that the sensorimotor areas were task-relevant not only
during ACT, but also during INH in terms of motor im-
agery. Nevertheless, this outcome may be specific to our
paradigm, due to the higher time pressure, which would
have activated strongly the motor programs and had made
the inhibition of motor traces more difficult.

An unexpected between-group difference was the
weaker late increase in beta spectral power for pianists
with MD, after the nonretrieval of the motor program. The
significant difference was localized over the left premotor,
sensorimotor, and mesial frontocentral cortex and extended
to prefrontal regions (F3, Fz).

Beta event-related synchronization (ERS) has been found
after movement execution [Müller et al., 2003; Pfurtscheller
et al., 1997] and movement imagination [Kühn et al., 2006;
Pfurtscheller et al., 2005]. It appears within the first 1,000
ms after movement or motor imagery offset [Müller-Putz
et al., 2007], which is in strong agreement with the laten-
cies in our experiment (�700–900 ms). Nevertheless, de-
spite the evidence that cortical deactivation or inhibition of
the motor cortex is coincident with increases in beta oscil-
lations [Pfurtscheller et al., 1997; Salmelin et al., 1995], the
precise functional role of the bursts of beta oscillations is
still poorly understood. According to Pfurtscheller et al.
[2005] and Müller-Putz et al. [2007], the beta ERS has to do
with the activation/deactivation of the sensorimotor cortex
circuitry and the resetting process of motor cortex control
systems to make the network control system ready for fur-
ther motor actions. At the subcortical level, a Go/NoGo
study recording local field potentials from the region of
subthalamic nuclei [Kühn et al., 2004] reported that when
movement was inhibited, the subcortical beta event-related
desynchronization (ERD) was terminated and reversed
into an ERS.

In the present study, the beta rebound, which followed
the period of suppression of beta band spectral power in
the NoGo condition, could not be related to movement-off-
set, but rather could support the role of motor imagery in
our paradigm. Prior to the Go/NoGo signal, participants
rehearse mentally the motor program, which in the NoGo
condition has to be deactivated after S2. Thus, in our para-
digm, this deactivation refers to the offset of motor
imagery.

In light of the findings of Pfurtscheller et al. [2005] and
Müller-Putz et al. [2007], our data would suggest that the
resetting mechanisms that prepare the cortical networks
for the execution of upcoming motor patterns in pianists
with MD are less efficient than those of healthy pianists.
Still, we believe that the question of the functional role of
the increase of beta oscillatory activity has not yet been
fully answered.
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Phase Synchrony Analysis

Our data reflect the binding between synchronized activ-
ity of distant sensorimotor cortical regions, characterized
mainly by short-range connections between neighboring
electrodes within the contralateral sensorimotor cortex and
within/or with the SMA.

So far, functional coupling has not been compared dur-
ing INH and ACT in patients with FTSD. EEG research in
diseases in which deficient inhibition plays a role in the
pathogenesis has proven that the measure of the synchro-
nization between cortical brain regions delivers relevant
results. For instance, inter-regional cortical synchronization
correlates with the defective corticocortical interactions in
patients with Tourette’s syndrome [Serrien et al., 2005],
attention deficit hyperactivity disorder [Barry et al., 2002],
or Parkinson’s disease [Silberstein et al., 2005].

Importantly, the work of Serrien et al. [2005] demon-
strated in a Go/NoGo paradigm enhanced coherence dur-
ing INH as compared with ACT. Previous literature also
reported stronger task-related coherence for NoGo than for
Go conditions [Shibata et al., 1997, 1998], results which our
data support: The inter-regional functional coupling dur-
ing ACT is weaker than that during INH in both groups.

It remains unknown whether the higher demand in
phase synchronization observed during NoGo trials is due
to active motor inhibition per se or to the stronger chal-
lenge that may represent the NoGo condition. Here, we
consider that the patterns of increased functional coupling
observed during INH around the time of playing
(�250 ms), which were absent during ACT, may indicate
that the NoGo cue does not merely imply disregarding the
motor execution; rather, it may be a manifestation of some
active processes required for the nonretrieval of the motor
program.

In pianists with MD, as compared with healthy pianists,

weaker functional connectivity underlying the nonretrieval

of motor programs was found around �250 ms between

the supplementary motor cortex (Cz) and left premotor

and sensorimotor electrodes (FC3, C3). This outcome

reflected their impaired motor INH.
The SMA is thought to play an important role in the

functional control of movement in that it has direct projec-
tions to the primary motor cortex and the spinal chord
[Matsuzaka et al., 1992]. Recent data has proven the sup-
pressive influence of SMA on the primary motor cortex
(M1) in motor imagery, thus reflecting the inhibitory func-
tion of the forward connection between the SMA and M1
[Kasess et al., 2008]. Hence, our results could be inter-
preted as a deficient higher order motor functioning in pia-
nists with MD: The phase coupling between the SMA and
the left premotor and sensorimotor cortex, which is
required for the nonretrieval of the motor program, is
weaker in pianists with MD. Consequently, these data can
be regarded as an electrophysiological correlate of the
impaired inhibition in pianists with MD. We believe that
assessing functional interactions between brain regions in

patients with deficient inhibitory circuitry, such as is the
case in dystonias [Abbruzzese et al., 2001; Hummel et al.,
2002; Ridding et al., 1995; Tinazzi et al., 2000], could be a
key issue, since these measures reveal the deficits of
patients in engaging the network connectivity used by
healthy controls.
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